Emerson Reinvents Pressure Relief Valves to Improve Performance and Reduce Emissions

DCS Emerson Reinvents Pressure Relief Valves to Improve Performance 1 400x275

December 13, 2022

 

Emerson has announced the release of two new-to-the-world technologies for the Crosby™ J-Series pressure relief valve (PRV) product line. The first is a Balanced Diaphragm, which eliminates the need for bellows in PRVs, while providing balanced operation against backpressure to lower cost of ownership and enhance performance. The second technology is Bellows Leak Detection, enabling remote detection of bellows ruptures in PRVs, with the capability to reduce and accurately calculate volumetric emissions in real-time.

Where backpressure is present, spring-loaded PRVs often utilize bellows to ensure balanced operation. Data analysis from 30,000 PRV service records across different industries and valve brands shows a bellows failure rate between 2% to 6%. In other words, a plant with 1,000 bellows PRVs may have between 20 to 60 PRVs continuously operating with damaged bellows. The most common causes of bellows failures are excessive backpressure and rapid cycling. Ruptured bellows will cause fugitive emissions and may prevent valve operation at the designed set pressure, with the risk of overpressure events.

The Crosby Balanced Diaphragm can replace bellows in PRV applications to address these and other issues. Its innovative design extends the backpressure limits from 60% to 80% and increases the Kb backpressure correction factor by up to 15%, expanding the application range of spring-loaded PRVs. The Kb factor is used to size PRVs when they are installed in closed systems subject to backpressure. Extending the backpressure limit and increasing the Kb factor often permits the use of smaller valves. In addition, diaphragms are inherently more resilient than bellows for higher backpressures and rapid cycling applications. Upgrading to a Balanced Diaphragm therefore lowers maintenance costs, improves reliability and increases stability.

The second technology, Bellows Leak Detection, addresses the problem of bellows failures, which are challenging to detect and often remain unnoticed for years until removal of the valve for periodic service. Leak detection and repair (LDAR) programs may include PRVs, but their target sources for leakage detection are flanges or valve seats, so bellows ruptures will generate fugitive emissions through the PRV bonnet vent that may not be in the LDAR scope. In addition, PRV installations are often difficult to access and in hazardous locations, making leak detection difficult.

The Bellows Leak Detection solution is a safer and more efficient method for detecting bellows failures and emissions. It consists of a backup piston and a Rosemount™ wireless or wired pressure transmitter. The backup piston can reduce emissions by over 90% in the event of a bellows rupture because it has a much smaller clearance than a standard bonnet vent, and it ensures balanced operation. The pressure transmitter provides instant timestamped notification of bellows failure and emissions volume data in real-time.

Upgrade kits for existing Crosby J-Series PRVs are available for both new technologies, and new PRVs can be purchased with these features pre-installed.

“With the growing global emphasis on sustainability, an increasing number of PRVs that currently vent to the atmosphere will require connections to flare systems to curb emissions. The resulting higher backpressures will push the limits of existing PRV designs, and the Balanced Diaphragm and Bellows Leak Detection breakthrough innovations will help our customers address this need,” said Judson Duncan, president of Emerson’s pressure management business.

 

To learn more about the Balanced Diaphragm and Bellows Leak Detection solutions, please click here

Emerson Logo 300x150

 

 

 

 

Related Articles

  • New G2RV-ST And G3RV-ST Relays from Omron

    New G2RV-ST And G3RV-ST Relays from Omron

    Omron’s New G2RV-ST And G3RV-ST Relays Are Among the Fastest in the Industry That Provide Better Visibility, Top-Notch Reliability, and Vibration Resistance January 23, 2023 Speedier relays are a key requirement in today’s fast-paced manufacturing industry, and Omron responded to this need with the new ST relays that are among the fastest available on the… Read More…


Editor’s Pick: Featured Article

Conserving Power and CO2 Emissions with Premium Efficiency Motors

The process of converting electrical energy to mechanical energy is never perfect. As much as we would like to have a 100% efficient motor, it is impossible to build a machine that will take 746 watts of electricity (the equivalent of 1 Hp) and convert it to 1 Hp of mechanical output. It always takes somewhat more than 746 watts to yield 1 Hp’s worth of output.

Motors are continuously being pushed to be more efficient and reduce these losses. Over the years the guiding regulations of motor manufacturing have pushed us to improve efficiencies to new levels to reduce the considerable global power consumption of motors, as they are everywhere. From our factories, utilities and homes and most anywhere you can think of.

How much power consumption aka money are you spending that you do not have to? Take a minute while having your coffee to see if you can save money.

Read More



Latest Articles

  • 5 Tips for Using Servo Drives in Exoskeleton Robots

    January 30, 2023 Exoskeleton robots are wearable augmentative devices that enhance the physical capabilities of their human wearers. Offering the ability to combine human intelligence and control with the strength and durability of a robot, they can be used for gait rehabilitation or locomotion assistance, offering many applications in industry, medicine, and more.1 However, developing… Read More…

  • Energy Technology Perspectives 2023

    Energy Technology Perspectives 2023

    Energy Technology Perspectives 2023 highlights major market and employment opportunities, as well as the emerging risks, for countries racing to lead the clean energy industries of today and tomorrow. The energy world is at the dawn of a new industrial age – the age of clean energy technology manufacturing – that is creating major new markets and millions of jobs but also raising new risks, prompting countries across the globe to devise industrial strategies to secure their place in the new global energy economy, according to a major new IEA report. Read More…