How Do Hydrogen Engines Work? Cummins Explains

DCS Cummins How do Hydrogen Engines Work 1 400

April 12, 2022

 

Hydrogen is an increasingly popular energy carrier. It can be readily produced from water using renewable electricity, and it burns without any greenhouse gas emissions. It is colorless, odorless, and does not spill. It’s no wonder there is a great interest in hydrogen engines as a part of destination zero. In this article, Cummins explains how hydrogen fuel can power a vehicle by comparing the similarities and differences between hydrogen and diesel and gas engines and provides some examples of hydrogen engines in mobility and transport. 

How hydrogen fuel can power a vehicle?

Using hydrogen to power an engine or motor is more straight forward than you might think. There are two ways to do this. 

The first way involves a device known as a fuel cell. The fuel cell converts hydrogen to electricity, which then powers the vehicle’s electric motors, just like in any electric vehicle. 

The other way is hydrogen engines; internal combustion engines that burn hydrogen as the fuel. Either method has its advantages and applications where they are best suited. However, the latter, using internal combustion engines is a more familiar technology.

In fact, one of the very first internal combustion engines ran on a mixture of hydrogen and oxygen—and featured an electric spark ignition mechanism. Its inventor, a former Swiss artillery officer named François Isaac de Rivaz, used it to build a vehicle that could carry heavy loads over short distances. 

Diesel engine vs. natural gas engine vs. hydrogen engine

Today, if you saw a modern internal combustion engine designed to run on hydrogen, you might not know that it’s not meant for natural gas. Four-stroke hydrogen internal combustion engines (Hydrogen ICE) operate on the same cycle as regular natural gas engines and have almost the same components—engine block, crank, cylinder heads, ignition system, installation parts, and so on. 

Diesel engines and hydrogen engines also share similar components. These include an engine block, crank, and installation parts such as mounts and flywheel housings. 

At Cummins Inc., they are leveraging our existing platforms and expertise in spark ignited technology to build hydrogen engines. Our hydrogen engine is a spark ignited engine variant with similar engine hardware to natural gas and gasoline engines.

This high commonality among engine components introduces scale advantages. This economies of scale is critical in the transportation sector’s journey to lower emissions. It reduces costs and delivers the needed reliability.

There are also differences between hydrogen engines and other spark ignited engines such as natural gas and gasoline engines.

For example, differences in the physical properties of hydrogen impacts how fuel and air are metered and injected. Pre-ignition is a greater problem for hydrogen engines than for gasoline engines, because hydrogen is much easier to ignite. Direct injection is one way to overcome pre-ignition issues. Direct injection systems introduce fuel–hydrogen, in this case –directly into the cylinders, rather than into the intake manifold or ports. If the injection takes place at a time when the inlet valve is closed, backfire conditions are avoided. Another solution is to completely design the combustion system for hydrogen.  

Another consideration is the formation of nitrogen oxides, or NOx. NOx is an atmospheric pollutant which can cause poor air quality and lead to the brown-orange haze that forms above some large cities in the summer. 

When hydrogen burns in the presence of lots of oxygen, very little NOx is formed. However, when hydrogen burns in the presence of a small amount of oxygen, a large amount of NOx can be created. As a result, hydrogen engines are typically tuned to run on an air to fuel ratio of 2 :1. This means that twice as much air is needed to burn all the fuel that is injected into the cylinders. Hydrogen engines often require an exhaust treatment system to remove this excess NOx. 

Can hydrogen engines work in medium and heavy-duty trucks and buses?

Hydrogen internal combustion engines are appealing to vehicle makers for two primary reasons. First is  their similarity with traditional internal combustion engines. Second is hydrogen’s ability to power vehicles as a zero-carbon fuel.

An original equipment manufacturer (OEM) can build vehicles with hydrogen engines that are very similar to existing internal combustion engines. Most of the vehicle’s other components and software remain the same. 

Hydrogen engines are also attractive to end users. Hydrogen engines look, sound and work like the internal combustion engines that every mechanic in the world is used to. Their reliability and durability are equal to that of diesel engines. 

Cummins is currently testing hydrogen engines to mitigate the risks of hydrogen embrittlement and erosion. We will share our findings as our tests progress. 

Commercial fleet operators can purchase vehicles featuring hydrogen engines without the anxiety that might come from investing in a brand new technology.

Examples of hydrogen engines in the mobility and transportation sectors also go beyond medium and heavy-duty trucking. You can find users evaluating hydrogen engines in marine, construction,  and beyond.

So, you might not know immediately that a vehicle is designed for hydrogen if you saw its engine, but if you saw its fuel tank, you would know right away. Storing hydrogen onboard motor vehicles is  safe and becoming more economical and practical. Cummins has recently formed a joint venture with NPROXX, a leader in hydrogen storage and transportation for hydrogen storage tanks. This joint venture will provide customers with hydrogen and compressed natural gas storage products for both on-highway and rail applications. 

DCS Cummins How do Hydrogen Engines Work 2 400

 

 

 

 

Source

 

Related Articles

  • New G2RV-ST And G3RV-ST Relays from Omron

    New G2RV-ST And G3RV-ST Relays from Omron

    Omron’s New G2RV-ST And G3RV-ST Relays Are Among the Fastest in the Industry That Provide Better Visibility, Top-Notch Reliability, and Vibration Resistance January 23, 2023 Speedier relays are a key requirement in today’s fast-paced manufacturing industry, and Omron responded to this need with the new ST relays that are among the fastest available on the… Read More…


Editor’s Pick: Featured Article

Conserving Power and CO2 Emissions with Premium Efficiency Motors

The process of converting electrical energy to mechanical energy is never perfect. As much as we would like to have a 100% efficient motor, it is impossible to build a machine that will take 746 watts of electricity (the equivalent of 1 Hp) and convert it to 1 Hp of mechanical output. It always takes somewhat more than 746 watts to yield 1 Hp’s worth of output.

Motors are continuously being pushed to be more efficient and reduce these losses. Over the years the guiding regulations of motor manufacturing have pushed us to improve efficiencies to new levels to reduce the considerable global power consumption of motors, as they are everywhere. From our factories, utilities and homes and most anywhere you can think of.

How much power consumption aka money are you spending that you do not have to? Take a minute while having your coffee to see if you can save money.

Read More



Latest Articles

  • Energy Technology Perspectives 2023

    Energy Technology Perspectives 2023

    Energy Technology Perspectives 2023 highlights major market and employment opportunities, as well as the emerging risks, for countries racing to lead the clean energy industries of today and tomorrow. The energy world is at the dawn of a new industrial age – the age of clean energy technology manufacturing – that is creating major new markets and millions of jobs but also raising new risks, prompting countries across the globe to devise industrial strategies to secure their place in the new global energy economy, according to a major new IEA report. Read More…

  • Conserving Power and CO2 Emissions with Premium Efficiency Motors

    Conserving Power and CO2 Emissions with Premium Efficiency Motors

    Saving the environment and thousands of dollars a year January 17, 2023 New motor efficiency vs your installed motors Premium efficiency motors. How much power consumption aka money are you spending that you do not have to? Take a minute while having your coffee to see if you can save money. The process of converting… Read More…