Reducing Total Cost of Ownership in Pumping Systems

Schneider Electric


November 1, 2017

by Lionel Gaudrel and Arnaud Savreux

Wherever pumping systems are present–in environments such as buildings and water / wastewater and oil and gas facilities–energy consumption exerts a major influence on cost. Despite the fact that electrical energy cost represents 40% of the total cost of ownership of pumping systems, many organizations fail to introduce the proper steps to leverage cost reduction through efficiency improvements. To solve this dilemma, the following major barriers need to be recognized and addressed: Lack of proper metrics – Energy efficiency has traditionally not been used in assessing performance. In most organizations, the responsibilities of energy procurement and efficient operations are separate and consistent / standardized metrics are not utilized. Knowledge gap – A lack of awareness in energy efficiency opportunities is prevalent and, as a result, potential savings and other benefits are missed. Fear of investment – Operations personnel often struggle to present attractive large or even small investments to their finance organizations.

This paper demonstrates how deployment of an energy management plan, with limited investment, can provide reductions in pumping systems TCO while maintaining sustainability objectives. Any sound energy plan should take into account the following three steps: 1. Energy efficiency management 2. Asset management 3. Energy cost management For the purposes of this paper, the scope of a pumping system will be defined as encompassing all related elements starting from the point of the electrical utility connection down to the point of end use. This paper will illustrate how energy management best practices can result in a 20% reduction in TCO and a return of investment (ROI) within 24 months.

Energy efficiency is now a global high priority for both industrialized and emerging countries. The Rio conference and Earth Summit of 1992 and the Kyoto Protocol of 1997 resulted in the signing of a global treaty that sets binding targets for reduction of greenhouse gas emissions. The International Energy Agency (IEA) and various governments and non-governmental organizations (NGOs) agree that the reduction of CO2 emissions and the resulting energy savings can be achieved through the deployment of energy efficient products and systems. The challenge, however, is that the nature of production in industrial environments is in a constant state of flux. Production cycles, for example, are influenced by variables such as market demand, weather, and local regulations. As a result, factory and building operators need to understand how and when energy is used in order to minimize consumption and related costs. The pump system energy management approach discussed in this paper will review the nature of efficiency loss not only for individual components within the system, but also for the system as a whole, integrated entity. In pumping systems, most inefficiency comes from: A mismatch between the pump deployed and the actual system requirement (i.e., undersized or oversized) The improper use of throttling valves and damper technologies to control the flow of liquids These two elements imply that the way pumping systems are controlled plays a major role regarding how efficiency can be improved. Control systems themselves are composed of both hardware and software components. On the hardware side, variable speed drives are a primary enabler of high efficiency performance.

Read the full repot here:

Related Articles

Editor’s Pick: Featured Article

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s u-control 2000: The Automation Controller

Weidmüller’s scalable engineering software, u-control 2000, adapts individually to your requirements. And, the u-control is powerful, compact and fully compatible with Weidmüller’s I/O system u-remote. This article looks at what makes u-control the heart of your automation.

Programmable logic controllers (PLCs) are one of the main components of any automated system. A typical control system has inputs, outputs, controllers (i.e., PLCs), and some type of human interaction with the system, a human machine interface (HMI), for example.

Read More

Latest Articles

  • The Story of How SmartD Revolutionized Motor Control for the 21st Century

    May 28, 2024 By Krystie Johnston To reinvent the wheel is to attempt to duplicate something that has already been created, most often with superior results. SmartD has not reinvented the Variable Frequency Drive (VFD). They have revolutionized it. When Simon Leblond, CEO of SmartD Technologies Inc. and his co-founders set out to start a… Read More…

  • Festo’s Innovative Solutions for Laboratory Automation

    May 28, 2024 By Krystie Johnston ATS Life Sciences Systems relies on Festo’s automation experience to develop customized pipetting solutions that exceed the capabilities of existing liquid handling technology on the market. Festo in the Life Science Industry The healthcare industry encounters numerous challenges in meeting demand and time-to-market for new products and innovations. Festo’s Life Science division offers innovative solutions… Read More…